3 ORDINARY FRACTIONAL DIFFERENTIAL EQUATIONS. EXISTENCE AND UNIQUENESS THEOREMS

3.1 Introduction and a Brief Overview of Results .. 135
3.2 Equations with the Riemann-Liouville Fractional Derivative in the Space of Summable Functions ... 144
 3.2.1 Equivalence of the Cauchy Type Problem and the Volterra Integral Equation ... 145
 3.2.2 Existence and Uniqueness of the Solution to the Cauchy Type Problem ... 148
 3.2.3 The Weighted Cauchy Type Problem ... 151
 3.2.4 Generalized Cauchy Type Problems ... 153
 3.2.5 Cauchy Type Problems for Linear Equations ... 157
 3.2.6 Miscellaneous Examples ... 160
3.3 Equations with the Riemann-Liouville Fractional Derivative in the Space of Continuous Functions. Global Solution ... 162
 3.3.1 Equivalence of the Cauchy Type Problem and the Volterra Integral Equation ... 163
 3.3.2 Existence and Uniqueness of the Global Solution to the Cauchy Type Problem ... 164
 3.3.3 The Weighted Cauchy Type Problem ... 167
 3.3.4 Generalized Cauchy Type Problems ... 168
 3.3.5 Cauchy Type Problems for Linear Equations ... 170
 3.3.6 More Exact Spaces ... 171
 3.3.7 Further Examples ... 177
3.4 Equations with the Riemann-Liouville Fractional Derivative in the Space of Continuous Functions. Semi-Global and Local Solutions ... 182
 3.4.1 The Cauchy Type Problem with Initial Conditions at the Endpoint of the Interval. Semi-Global Solution ... 183
 3.4.2 The Cauchy Problem with Initial Conditions at the Inner Point of the Interval. Preliminaries ... 186
 3.4.3 Equivalence of the Cauchy Problem and the Volterra Integral Equation ... 189
 3.4.4 The Cauchy Problem with Initial Conditions at the Inner Point of the Interval. The Uniqueness of Semi-Global and Local Solutions ... 191
 3.4.5 A Set of Examples ... 196
3.5 Equations with the Caputo Derivative in the Space of Continuously Differentiable Functions ... 198
 3.5.1 The Cauchy Problem with Initial Conditions at the Endpoint of the Interval. Global Solution ... 199
 3.5.2 The Cauchy Problems with Initial Conditions at the End and Inner Points of the Interval. Semi-Global and Local Solutions ... 205
 3.5.3 Illustrative Examples ... 209
3.6 Equations with the Hadamard Fractional Derivative in the Space of Continuous Functions .. 212

4 METHODS FOR EXPLICITLY SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS ... 221

4.1 Method of Reduction to Volterra Integral Equations 221
 4.1.1 The Cauchy Type Problems for Differential Equations with the Riemann-Liouville Fractional Derivatives 222
 4.1.2 The Cauchy Problems for Ordinary Differential Equations ... 228
 4.1.3 The Cauchy Problems for Differential Equations with the Caputo Fractional Derivatives 230
 4.1.4 The Cauchy Type Problems for Differential Equations with Hadamard Fractional Derivatives 234

4.2 Compositional Method ... 238
 4.2.1 Preliminaries .. 238
 4.2.2 Compositional Relations .. 239
 4.2.3 Homogeneous Differential Equations of Fractional Order with Riemann-Liouville Fractional Derivatives 242
 4.2.4 Nonhomogeneous Differential Equations of Fractional Order with Riemann-Liouville and Liouville Fractional Derivatives with a Quasi-Polynomial Free Term .. 245
 4.2.5 Differential Equations of Order 1/2 248
 4.2.6 Cauchy Type Problem for Nonhomogeneous Differential Equations with Riemann-Liouville Fractional Derivatives and with a Quasi-Polynomial Free Term .. 251
 4.2.7 Solutions to Homogeneous Fractional Differential Equations with Liouville Fractional Derivatives in Terms of Bessel-Type Functions .. 257

4.3 Operational Method ... 260
 4.3.1 Liouville Fractional Integration and Differentiation Operators in Special Function Spaces on the Half-Axis 261
 4.3.2 Operational Calculus for the Liouville Fractional Calculus Operators ... 263
 4.3.3 Solutions to Cauchy Type Problems for Fractional Differential Equations with Liouville Fractional Derivatives 266
 4.3.4 Other Results .. 270

4.4 Numerical Treatment ... 272

5 INTEGRAL TRANSFORM METHOD FOR EXPLICIT SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS ... 279

5.1 Introduction and a Brief Survey of Results 279
5.2 Laplace Transform Method for Solving Ordinary Differential Equations with Liouville Fractional Derivatives 283
5.2.1 Homogeneous Equations with Constant Coefficients 283
5.2.2 Nonhomogeneous Equations with Constant Coefficients 295
5.2.3 Equations with Nonconstant Coefficients 303
5.2.4 Cauchy Type for Fractional Differential Equations 309

5.3 Laplace Transform Method for Solving Ordinary Differential Equations with Caputo Fractional Derivatives 312
5.3.1 Homogeneous Equations with Constant Coefficients 312
5.3.2 Nonhomogeneous Equations with Constant Coefficients 322
5.3.3 Cauchy Problems for Fractional Differential Equations 326

5.4 Mellin Transform Method for Solving Nonhomogeneous Fractional Differential Equations with Liouville Derivatives 329
5.4.1 General Approach to the Problems 329
5.4.2 Equations with Left-Sided Fractional Derivatives 331
5.4.3 Equations with Right-Sided Fractional Derivatives 336

5.5 Fourier Transform Method for Solving Nonhomogeneous Differential Equations with Riesz Fractional Derivatives 341
5.5.1 Multi-Dimensional Equations 341
5.5.2 One-Dimensional Equations 344

6 PARTIAL FRACTIONAL DIFFERENTIAL EQUATIONS 347
6.1 Overview of Results 347
6.1.1 Partial Differential Equations of Fractional Order 347
6.1.2 Fractional Partial Differential Diffusion Equations 351
6.1.3 Abstract Differential Equations of Fractional Order 359
6.2 Solution of Cauchy Type Problems for Fractional Diffusion-Wave Equations 362
 6.2.1 Cauchy Type Problems for Two-Dimensional Equations 362
 6.2.2 Cauchy Type Problems for Multi-Dimensional Equations 366
6.3 Solution of Cauchy Problems for Fractional Diffusion-Wave Equations 373
 6.3.1 Cauchy Problems for Two-Dimensional Equations 374
 6.3.2 Cauchy Problems for Multi-Dimensional Equations 377
6.4 Solution of Cauchy Problems for Fractional Evolution Equations 380
 6.4.1 Solution of the Simplest Problem 380
 6.4.2 Solution to the General Problem 384
 6.4.3 Solutions of Cauchy Problems via the H-Functions 388

7 SEQUENTIAL LINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER 393
7.1 Sequential Linear Differential Equations of Fractional Order 394
7.2 Solution of Linear Differential Equations with Constant Coefficients 400
 7.2.1 General Solution in the Homogeneous Case 400
 7.2.2 General Solution in the Non-Homogeneous Case. Fractional Green Function 403
7.3 Non-Sequential Linear Differential Equations with Constant Coefficients .. 407
7.4 Systems of Equations Associated with Riemann-Liouville and Caputo Derivatives 409
 7.4.1 General Theory .. 409
 7.4.2 General Solution for the Case of Constant Coefficients. Fractional Green Vectorial Function 412
7.5 Solution of Fractional Differential Equations with Variable Coefficients. Generalized Method of Frobenius 415
 7.5.1 Introduction ... 415
 7.5.2 Solutions Around an Ordinary Point of a Fractional Differential Equation of Order α 418
 7.5.3 Solutions Around an Ordinary Point of a Fractional Differential Equation of Order 2α 421
 7.5.4 Solution Around an α-Singular Point of a Fractional Differential Equation of Order α 424
 7.5.5 Solution Around an α-Singular Point of a Fractional Differential Equation of Order 2α 427
7.6 Some Applications of Linear Ordinary Fractional Differential Equations ... 433
 7.6.1 Dynamics of a Sphere Immersed in an Incompressible Viscous Fluid. Basset's Problem 434
 7.6.2 Oscillatory Processes with Fractional Damping .. 436
 7.6.3 Study of the Tension-Deformation Relationship of Viscoelastic Materials 439

8 FURTHER APPLICATIONS OF FRACTIONAL MODELS 449
 8.1 Preliminary Review .. 449
 8.1.1 Historical Overview ... 450
 8.1.2 Complex Systems ... 452
 8.1.3 Fractional Integral and Fractional Derivative Operators .. 456
 8.2 Fractional Model for the Super-Diffusion Processes ... 458
 8.3 Dirac Equations for the Ordinary Diffusion Equation ... 462
 8.4 Applications Describing Carrier Transport in Amorphous Semiconductors with Multiple Trapping 463

Bibliography 469

Subject Index 521